AES E-Library

← Back to search

Pruning Algorithms for Multilayer Perceptrons Tailored for Speech/Non-Speech Classification in Digital Hearing Aids

This paper explores the feasibility of using different pruning algorithms for multilayer perceptrons (MLPs) applied to the problem of speech/non-speech classification in digital hearing aids. A classifier based on MLPs is considered the best option in spite of its presumably high computational cost. Nevertheless, its implementation has been proven to be feasible: it requires some trade-offs involving a balance between reducing the computational demands (that is, the number of neurons) and the quality perceived by the user. In this respect, this paper will focus on the design of three novel pruning algorithms for MLPs, which attempt to converge to the minimum complexity network (that is, the lowest number of neurons in the hidden layer) without degrading the performance of it. The results obtained with the proposed algorithms will be compared with those obtained when using another pruning algorithm proposed in the literature.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=14932


(281KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content