AES E-Library

A Machine Learning Approach to Detecting Sound-Source Elevation in Adverse Environments

Recent studies have shown that Deep neural Networks (DNNs) are capable of detecting sound source azimuth direction in adverse environments to a high level of accuracy. This paper expands on these findings by presenting research that explores the use of DNNs in determining sound source elevation. A simple machine-hearing system is presented that is capable of predicting source elevation to a relatively high degree of accuracy in both anechoic and reverberant environments. Speech signals spatialized across the front hemifield of the head are used to train a feedforward neural network. The effectiveness of Gammatone Filter Energies (GFEs) and the Cross-Correlation Function (CCF) in estimating elevation is investigated as well as binaural cues such as Interaural Time Difference (ITD) and Interaural Level Difference (ILD). Using a combination of these cues, it was found that elevation to within 10 degrees could be predicted with an accuracy upward of 80%.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=19485


(322KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content