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Organized with the AES Technical Committee on Machine Learning and Arti�cal Intelligence (TC-

MLAI)

Format: Short presentations with Questions and Answers and possibly panel discussion
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Technical Committee on Machine Learning and Arti�cal Intelligence
focuses on applications of machine learning and arti�cial intelligence in audio

Founded in 2021

https://www.aes.org/technical/mlai/ (https://www.aes.org/technical/mlai/)
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Panelists, Topics
Gordon Wichern, MERL: High level perceptual loss functions, phase and magnitude

Renato Profeta, Gerald Schuller, Ilmenau University of Technology: Perceptual loss functions:

psycho acoustic models and loss functions

Stefan Goetze, George Close, University of Shef�eld: GAN-based perceptual metric prediction

for speech enhancement

Martin Strauss, Bernd Edler, AudioLabs Erlangen: Perceptually motivated conditional input for

Flow-based speech enhancement
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MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)

Cambridge, Massachusetts, USA

http://www.merl.com

Audio Loss Functions in the Time and Frequency Domain

Gordon Wichern

153rd Audio Engineering  Convention - NYC

October 20, 2022

http://www.merl.com/
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Audio Source Separation:

Ø Separate a mixed signal into its components

Ø Unlike labeling tasks, we listen to the output

Fields of Application

Music Source Separation Speech Enhancement & Separation Speech-SFX-Music Separation

Petermann, D., Wichern, G., Wang, Z.-Q., Le Roux, J., "The Cocktail Fork Problem: Three-Stem 

Audio Separation for Real-World Soundtracks", IEEE International Conference on Acoustics, 

Speech, and Signal Processing (ICASSP), April 2022, pp. 526-530.

Demo video:

https://cocktail-fork.github.io/
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Deep Learning-based Source Separation Pipeline
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Ø Two Key Design Decisions:

Ø Deep Neural Network

Ø Operate on waveforms

Ø Operate on spectrograms

Ø Loss Function

Ø Time domain (waveform)

Ø Frequency domain (spectrogram)
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Mixture (Time)

Mixture (Time-frequency)

§ Deep learning revolution began with images (e.g., ImageNet)

§ Magnitude spectrograms are an image

§ Magnitude correlates strongly with human perception

§ We can weight magnitude based on psychoacoustic models

Frequency Domain (Magnitude Spectrogram)-based Loss Functions
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Masking-based audio source separation

Mixture (Time)

Estimates (Time-frequency)

Time-frequency Masks 

§ Classify the source each TF-bin belongs to

§ Estimated source = mask * mixture 
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Frequency Domain (Magnitude Spectrogram)-based Loss Functions

• Mean square error/Mean absolute 
error on magnitude spectrum

• Mask-based classification loss

• Typically we use noisy phase, only 
estimate magnitude

• Complex spectrogram loss

– Complex numbers now fully 
supported in most deep learning 
toolkits

– Similar to waveform losses

• Weight spectrum based on 
perceptual knowledge

How to compare?
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Bias Models for Interference and Artifacts

• Fundamental trade-off in source separation

– Interference reduction

– Artifact introduction

• In listening tests, artifacts tend to be more objectionable

• Incorporate bias in magnitude spectrogram loss

– Estimate less than ground truth (high weight)

– Estimate greater than ground truth (low weight)

Estimate Ground TruthMixture
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Time Domain (Waveform) Loss Functions

• Spectrograms have many parameters we must hand-select

• Major contribution of deep learning revolution is we can learn features

• STFT features often require long window-sizes (high latency)

• Time-domain models work well with short windows (low-latency)

• Time domain loss functions can preserve spatial cues

• Mean-square (absolute) error on waveforms

• SNR-based loss functions

– Scale invariant

– Shift-invariant

– Filter-invariant
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The Phase Compensation Problem 

• Waveform and complex spectrogram models must estimate phase

• Estimating phase is hard

• Bad phase estimates will hurt magnitude and cause artifacts

– Especially at low SNR
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Phase Error less than 90 deg. Phase Error greater than 90 deg.

Wang, Z.-Q., Wichern, G., Le Roux, J., "On The Compensation Between Magnitude and Phase in Speech Separation", IEEE Signal Processing Letters, 

DOI: 10.1109/LSP.2021.3116502, Vol. 28, pp. 2018-2022, November 2021.

https://ieeexplore.ieee.org/document/9552504
https://dx.doi.org/10.1109/LSP.2021.3116502
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Magnitude Loss for Time Domain Models

Mixture

Deep 
Neural 

Network

Estimate 1

Estimate 2

Estimate 3

|STFT|

|STFT|

|STFT|

Estimates Targets

Noisy Speech Separation

SI-SDR PESQ

Noisy -4.6 1.36

Waveform loss 6.5 1.61

Magnitude Loss -9.24 1.9

Waveform + 

Magnitude Loss

6.5 1.80

• Perceptual evaluation of speech quality (PESQ)

– Based on spectrogram magnitude

• Scale-invariant source to distortion ratio (SI-SDR)

– Compares time domain signals

– Requires phase alignment

Loss Function
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Take-Aways

• Time-domain (waveform) neural networks have multiple advantages

– Strong performance

– Low latency

– No feature engineering

• Waveform loss functions
– Preserve spatial cues

– Artifacts due to poor phase estimates

• Magnitude spectrogram loss functions

– Correlate with human perception

– Perceptual weighting

– Can trade-off artifact/Interference

– No time-alignment when estimating phase

• Use waveform+magnitude loss

– Relative weights depend on application





Link to the following presentation including soundfiles:
https://tuilmenauams.github.io/PsychoacousticLoss/

https://tuilmenauams.github.io/PsychoacousticLoss/


Goal: Loss function which favors what sounds
better to the human ear

Depending on the temporal/spectral shape of the noise, the ear favours one over the
other, depsite the same noise power

Problem: Popular and for gradient descent effective
loss functions like MSE don’t reflect these ear
preferences

Examples
Sound with spectrally flat noise from PCM quantization.
Sound with psychoacoustically spectrally shaped noise, with even higher noise power.

Evalutation with MSE
Evaluating these example with the Mean Square Error (MSE) loss favors the first, noisy,
example, wrongly!

Perceptual Loss Function using a Psycho-Acoustic
Prefilter

A psycho-acoustic prefilter uses a linear time-varying filter to normalize an audio signal
to its psycho-acostic masking threshold.
This is generated by a psycho-acoustic model, similar to what is used in audio coders.
After this prefilter, we have a new signal or domain and we apply the MSE loss function
there.



Psycho-Acoustic Prefilter Example
Musical exerpt: Slash - Anastasia, Released: 2012, Album: Apocalyptic Love

Example Signal Orignal (PCM 16-bit 44.1kHz) 

Example Signal MP3 128k 

Example Signal Quantized (choosen quantization factor) 

Mean Squared Error (MSE) Loss

One of the most common loss functions, widely used in many different applications.
It assesses the average squared difference between the observed and predicted values.

Reference: 
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html

MSE Loss (mp3 and original): tensor(5.8766) 
MSE Loss (quanitzed and original): tensor(1.3066) 

Observe:

In [1]: # Imports 
import torch 
import torchaudio 
import IPython.display as ipd 

In [2]: # Load audio files 
audio_wav, sr_wav = torchaudio.load('audio_original.wav') 
audio_mp3, sr_mp3 = torchaudio.load('audio_mp3_128k.wav') 
audio_quantized, sr_wav = torchaudio.load('audio_quantized.wav') 

In [3]: # Playback 
print('Example Signal Orignal (PCM 16-bit 44.1kHz)') 
display(ipd.Audio(audio_wav,rate=sr_wav)) 
print('Example Signal MP3 128k') 
display(ipd.Audio(audio_mp3,rate=sr_mp3)) 
print('Example Signal Quantized (choosen quantization factor)') 
display(ipd.Audio(audio_quantized,rate=sr_wav)) 

0:000:00 / 0:05/ 0:05

0:000:00 / 0:05/ 0:05

0:000:00 / 0:05/ 0:05

In [4]: # MSE Loss 
loss_mse = torch.nn.MSELoss() 
mse_mp3_original = loss_mse(audio_mp3,audio_wav)
print('MSE Loss (mp3 and original):', mse_mp3_original*100) 
mse_quant_original = loss_mse(audio_quantized,audio_wav) 
print('MSE Loss (quanitzed and original):', mse_quant_original*100) 

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html


The MSE loss of the mp3 is significantly greatar than the MSE loss of the quantized
audio even though the perceived hearing quality of the mp3 is significantly superior.

Psycho-Acoustic Pre-Filtering + MSE
A Psycho-Acoustic Model is used to generate filters that are applied to each block in
the time-frequency domain.
Computational expensive.

Reference: 
Schuller, G. (2020). Filter Banks and Audio Coding. Springer International Publishing.
https://doi.org/10.1007/978-3-030-51249-1

Pre-Filtering + MSE Loss mp3: 1.00347948318813 
Pre-Filtering + MSE Loss Quanitzed: 1.4562977594323456 

Observe:

Now, calculating the same MSE Loss in the psycho-acoustic pre-filtered domain, the
MSE Loss for the mp3 audio is smaller than the MSE loss of que quantized sound.

Log Spectral Difference

A distance measure (in dB) between log magnitudes of the spectra.
Much less computational expensive.
Can work well in certain applications.

Reference: 
Rabiner, L. and Juang, B., 1993. Fundamentals of speech recognition. Englewood Cliffs, N.J.:
PTR Prentice Hall.

LSD Loss mp3: tensor(0.9744) 
LSD Loss Quanitzed: tensor(1.9903)

In [5]: # Load pre-filtered audio files 
audio_wav_pref, sr_wav = torchaudio.load('audio_originalpref.wav') 
audio_mp3_pref, sr_mp3 = torchaudio.load('audio_mp3_128kpref.wav') 
audio_quantized_pref, sr_wav = torchaudio.load('audio_quantizedpref.wav') 

In [6]: # Pre-Filtering + MSE Loss 
loss_mse = torch.nn.MSELoss() 
mse_mp3_original = loss_mse(audio_mp3_pref[0,:],audio_wav_pref[0,:]) 
print('Pre-Filtering + MSE Loss mp3:', mse_mp3_original.numpy()*10000) 
mse_quant_original = loss_mse(audio_quantized_pref,audio_wav_pref) 
print('Pre-Filtering + MSE Loss Quanitzed:', mse_quant_original.numpy()*10000) 

In [7]: from lsd_loss import LSDLoss 
loss_lsd = LSDLoss() 
lsd_mp3_original = loss_lsd(audio_mp3[0,:],audio_wav[0,:]) 
print('LSD Loss mp3:', lsd_mp3_original) 
lsd_quant_original = loss_lsd(audio_quantized[0,:],audio_wav[0,:]) 
print('LSD Loss Quanitzed:', lsd_quant_original) 

https://doi.org/10.1007/978-3-030-51249-1


Observe:

The MSE loss of the quantized audio is also greater than the one for the mp3 audio,
favouring the best sounding audio.

Multi Scale Spectral Loss

More computational expensive than the LSD but less than the psycho-acoustic pre-
filtering.
Given two audio files, we compute their (magnitude) spectrogram Si and ,
respectively, with a given FFT size i, and define the loss as the sum of the L1 difference
between Si and  as well as the L1 difference between log Si and log . The total
reconstruction loss is then the sum of all the spectral losses with different FFT sizes.

Reference: 
Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, & Adam Roberts (2020). DDSP:
Differentiable Digital Signal Processing. In International Conference on Learning
Representations.

Multi Scale Spectral Loss mp3: [1.14763687] 
Multi Scale Spectral Loss Quanitzed: [2.28411725] 

Observe:

The MSE loss of the quantized audio is also greated than the one for the mp3 audio,
favouring the best sounding audio.

Results
Some losses favor the better sounding audio, while others don't.
The psycho-acoustic filtering makes use of psycho-acoustic effects of the human
hearing system and can be used in combination with a loss funcion in the design of a
psycho-acoustically perceptual loss function.
We can also transform the audio to a 'psycho-acoustic pre-filter domain' and perform
different processing in this domain.

In [8]: from asteroid.losses import SingleSrcMultiScaleSpectral 
loss_multiScaleSpectral = SingleSrcMultiScaleSpectral() 
multiScale_mp3_original = loss_multiScaleSpectral(audio_mp3_pref,audio_wav_pref) 
print('Multi Scale Spectral Loss mp3:', multiScale_mp3_original.numpy()/1000000) 
multiScale_quant_original = loss_multiScaleSpectral(audio_quantized_pref,audio_wav_
print('Multi Scale Spectral Loss Quanitzed:', multiScale_quant_original.numpy()/100



GAN-based Perceptual Metric 
Prediction for Speech 
Enhancement
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Stefan Goetze, Geoge L. Close

{s.goetze, glclose1}@sheffield.ac.uk 
153rd AES Convention

Teaching AI to hear like we do: psychoacoustics in machine learning
Oct 20th 2022, New York

https://aesfallconvention2022.sched.com/event/1Ay8V/teaching-ai-to-hear-like-we-do-psychoacoustics-in-machine-learning


● Single channel speech enhancement still an active research area
● Mean Squared error (MSE) distance based loss functions between 

enhanced and clean reference speech do not consider human perception
● There exist many metrics which are designed with human perception in 

mind:
○ STOI - intrusive measure of speech intelligibility 
○ PESQ - intrusive measure of speech quality  

● PESQ (and other metrics) may be unsuitable as loss functions due to non 
linearities 

● Design loss functions derived from metrics which incorporate a model of 
human perception

Motivation

2



Problem Definition – Signal Enhancement 

3

Goal is to recover the clean speech from the noisy mixture from the microphone



Wiener weighting rule
Wiener filter

Problem: Dependency of unknown clean speech signal 
Reformulation in terms of auto-power spectral densities possible

Spectral subtraction
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[1] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth compression of noisy speech,” Proc. IEEE,1979.

[2] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. ASSP, 1979 4

-+



Weighting Function of Ephraim & Malah
● Approach: Minimise the logarithmic error/loss between clear speech and filter output 

5[1] Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean–square error log-spectral amplitude estimator,” IEEE Trans. ASSP, 1985.



● Approach: Hide noise distortion under the masking threshold

Use of Psychoacoustically Motivated Targets

6

Three approximations for spreading function:

[1] S. Gustafsson, “Enhancement of Audio Signals by Combined Acoustic Echo Cancellation and Noise Reduction”, PhD thesis, Aachen, 1999

[2] S. Goetze, V. Mildner, KD Kammeyer: “A Psychoacoustic Noise Reduction Approach for Stereo Hands-Free Systems”, AES 120th Convention, 2006

IND: inaudiable noise distortion 



● NN-based approaches are able to deal with non-stationary disturbances

Neural Network-based Signal Enhancement
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● Various different quality metrics exist
● Approach: Directly optimise for quality

● Are these metrics differentiable to be used as a loss?

Use of Psychoacoustically Motivated Targets

8

Signal-based quality measured

Acronym Measure

SSRR Segmental Signal to Reverberation Ratio

SRRE Signal to Reverberation Ratio Enhancement

FWSSRR Frequency Weighted SSRR

WSS Weighted Spectral Slope

OMCR Objective Measure of Colouration in Reverberation

dIS , dCEP Itakura-Saito-Measure, Cepstral Distance

dLAR , dLLR Log Area Ratio, Log Likelihood Ratio

LSD Log Spectral Distortion

Psychoacoustically motivated measures

Acronym Measure

BSD Bark Spectral Distortion

RDT Reberberation Dacay Tail Measure

PSM Perceptual Similarity Measure

PSMt Perceptual Similarity Measure  (focus on low correlations)

ΔPSM PSM  „enhancement“

ΔPSMt PSM  „enhancement“

PESQ Perceptual Evaluation of Speech Quality

SRMR Speech to Reverberation Modulation Energy Ratio



Short-Term Speech Intelligibility (STOI)
● Only few metrics are simple enough to be differentiable

✓
[1] C. H. Taal, et. al, “An algorithm for intelligibility prediction of time–frequency weighted noisy speech”, IEEE Trans. ASLP, 2011.

[2] Fu et al, “End-to-End Waveform Utterance Enhancement for Direct Evaluation Metrics Optimization by Fully Convolutional Neural Networks”,TASLP, 2018 



Perceptual Evaluation of Quality (PESQ) Metric
● Commonly used metric PESQ is not differentiable.

[1] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of

telephone networks and codecs,” in ICASSP’01, 2001.



● Approaches exist, but are only approximations

PESQ Specification

Martin-Donas et al “A deep learning loss 
function based on the perceptual evaluation 

of the speech quality”, 2018

Differentiable PESQ?



● Train an additional network to 
predict the behaviour of the 
metric 

● Take inference of this predictor 
to form loss function for speech 
enhancement network 

● The speech enhancement 
network and this metric 
prediction network are trained 
adversarially as Generator and 
Discriminator in a GAN

Baseline System: MetricGAN+ [1]

12
[1] “MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement” -
Fu et al, Interspeech,2021



Metric Prediction
Discriminator

● Neural model tasked with 
predicting the target metric

● The signals tested are:
○ Clean speech
○ Enhanced speech 

(output of Generator)
○ Noisy speech

● Loss function is MSE between 
true and predicted score

13
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Speech 
Enhancement 
Generator

● Neural model tasked with 
outputting a magnitude 
‘mask’ to be multiplied by the 
noisy features

● Loss function is based entirely
on inference of Discriminator 
network
○ Goal is to produce outputs 

with ‘perfect’ score of 1 14
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MetricGAN+

15

Alternately trained every epoch
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Alternately trained every epoch

Hyperparameter 
value

MetricGAN+/-

[1] G. Close, T. Hain, and S. Goetze: “MetricGAN+/-: Increasing Robustness of Noise Reduction on Unseen Data“, EUSIPCO22, 2022



Results: VoiceBank-DEMAND Testset

17

Model PESQ STOI Csig Cbak Covl

Noisy 1.97 92.0 3.35 2.44 2.63

SEGAN 2.42 92.5 3.61 2.61 3.01

MetricGAN+ 

(PESQ)

3.05 93.0 4.03 2.87 3.52

MetricGAN+/-

(PESQ)

3.22 91.3 4.05 2.94 3.62

Improves over baseline in terms of PESQ, Composite measure and comparative in STOI

[1] G. Close, T. Hain, and S. Goetze: “MetricGAN+/-: Increasing Robustness of Noise Reduction on Unseen Data“, EUSIPCO22, 2022



Results: CHiME3 Testset

18

Model PESQ STOI Csig Cbak Covl

Noisy 1.32 65.0 2.79 1.40 1.99

MetricGAN+ 

(PESQ)

1.84 66.6 2.86 2.12 2.27

MetricGAN+/-

(PESQ)

1.97 65.3 2.89 2.15 2.33

Improves over baseline in terms of PESQ, Composite measure and comparative in STOI

[1] G. Close, T. Hain, and S. Goetze: “MetricGAN+/-: Increasing Robustness of Noise Reduction on Unseen Data“, EUSIPCO22, 2022



Some Sound Examples



Conclusions

20

● Psychoacoustically motivated metrics beneficial in speech 
enhancement loss

● Neural networks outperform signal-processing-based approaches
● Incorporating perceptual knowledge into speech enhancement is 

possible
● Non-differentiable metrics can be used in losses using GAN 

structures
● Networks have to be exposed to a wide range of signal quality

○ Additional predictor networks can be used: MetricGAN+/-



Thanks for listening
● Any questions?

21

Stefan Goetze, Geoge L. Close
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Introduction
Speech enhancement (SE)

⌅ Improve (perceptual) quality of speech degraded by
background noise

⌅ Predominant approach: Deep Neural Networks (DNN)

⌅ Often application of a separation mask

AudioLabs 2022

Slide 1

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



Introduction
Generative models for SE

⌅ Outline probabilistic process

⌅ Examples:
I Generative Adversarial Networks [1]
I Diffusion probabilistic models [2]
I Normalizing flows [5]

AudioLabs 2022

Slide 2

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



Normalizing flows
Fundamentals

⌅ Invertible neural networks

x = f(z), z = f−1(x), x, z ∈ R
D

⌅ Change of variables

px(x) = pz(z) |det (J(x))|

⌅ Optimization of maximum likelihood

⇒ Integration of perceptual loss criteria difficult

AudioLabs 2022

Slide 3

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



Normalizing flows
Architecture [5]

AudioLabs 2022

Slide 4
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Conditional input
Time domain

Time domain input processed by a conv layer

⌅ Initial experiments show promising results

⌅ Approach for further improvement:
perceptually motivated pre-processing

AudioLabs 2022

Slide 5

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



Conditional input
Mel spectrogram

⌅ Frequent choice or conditional input representation:
Mel spectrogram (e.g. in neural vocoders [4, 3])

⌅ Resulting quality ⇓

⌅ Possible reason: Low time resolution
due to weighted summation of STFT output magnitudes

AudioLabs 2022

Slide 6

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



Conditional input
Mel spectrogram

AudioLabs 2022

Slide 7

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



Conditional input
All-pole gammatone filterbank (APG) [6]

⌅ Bark spaced all-pole gammatone filterbank (APG)

⌅ Conditional input representation: output magnitudes
of complex valued IIR filters

AudioLabs 2022
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Conditional input
APG

AudioLabs 2022

Slide 9
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Conditional input
APG

AudioLabs 2022
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Results
Listening test [6]

AudioLabs 2022
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Results
Computational metrics [6]

Table: Computational evaluation results for the test set
(VoiceBank-DEMAND). Mean values. Best results in bold.

Method PESQ CSIG CBAK COVL STOI 2f-model

Noisy 1.97 3.35 2.45 2.63 0.92 31.70
CDiffuSE [2] 2.52 3.72 2.91 3.10 0.91 33.65
MetricGAN+ [1] 3.13 4.08 3.16 3.60 0.93 34.36

SE-Flow 2.41 3.79 3.11 3.09 0.93 46.92

SE-Flow-Mel 1.63 2.84 2.00 2.19 0.85 35.63
SE-Flow-APG 2.05 3.30 2.51 2.65 0.89 40.16

AudioLabs 2022

Slide 12
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Listening examples

Noisy

Reference

SE-Flow

SE-Flow-Mel

SE-Flow-APG

ined from the VoiceBank-DEMAND testset [7]

vated Conditional Input for Flow-Based Speech Enhancement



Conclusions

⌅ SE-Flow and SE-Flow-APG show favourable perceptual
performance

⌅ SE-Flow-APG overcomes Mel induced problems

⌅ SE-Flow-APG remains stable in lower SNR

⌅ Listening test results not reflected in computational metrics

AudioLabs 2022

Slide 14
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Thank you!

Method PESQ CSIG CBAK COVL STOI 2f-model

Noisy 1.97 3.35 2.45 2.63 0.92 31.70
CDiffuSE [2] 2.52 3.72 2.91 3.10 0.91 33.65
MetricGAN+ [1] 3.13 4.08 3.16 3.60 0.93 34.36

SE-Flow 2.41 3.79 3.11 3.09 0.93 46.92

SE-Flow-Mel 1.63 2.84 2.00 2.19 0.85 35.63
SE-Flow-APG 2.05 3.30 2.51 2.65 0.89 40.16

AudioLabs 2022

Slide 15

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



References I

[1] S.-W. Fu, C. Yu, et al., MetricGAN+: An Improved

Version of MetricGAN for Speech Enhancement, in Proc.
Interspeech Conf., 2021, pp. 201–205.

[2] Y.-J. Lu, Z.-Q. Wang, et al., Conditional Diffusion
Probabilistic Model for Speech Enhancement, in Proc. IEEE
Intl. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), 2022, pp. 7402–7406.

AudioLabs 2022

Slide 16

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



References II

[3] A. Mustafa, N. Pia, and G. Fuchs, StyleMelGAN: An

Efficient High-Fidelity Adversarial Vocoder with Temporal

Adaptive Normalization, in Proc. IEEE Intl. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2021, pp. 6034–6038.

[4] R. Prenger, R. Valle, and B. Catanzaro, Waveglow:

A Flow-based Generative Network for Speech Synthesis, in
Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 3617–3621.

AudioLabs 2022

Slide 17

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



References III

[5] M. Strauss and B. Edler, A flow-based neural network for

time domain speech enhancement, in Proc. IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), 2021,
pp. 5754–5758.

[6] M. Strauss, M. Torcoli, and B. Edler, Improved

normalizing flow-based speech enhancement using an all-pole

gammatone filterbank for conditional input representation.
accepted at IEEE Spoken Language Technology Workshop
(SLT), 2023.

AudioLabs 2022

Slide 18

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler



References IV

[7] C. Valentini-Botinhao, X. Wang, et al., Speech
Enhancement for a Noise-Robust Text-to-Speech Synthesis

System Using Deep Recurrent Neural Networks, 2016,
pp. 352–356.

AudioLabs 2022

Slide 19

Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement

Martin Strauss and Bernd Edler


