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e Organized with the AES Technical Committee on Machine Learning and Artifical Intelligence (TC-
MLAI)
e Format: Short presentations with Questions and Answers and possibly panel discussion



Technical Committee on Machine Learning and Artifical Intelligence

e focuses on applications of machine learning and artificial intelligence in audio
e Founded in 2021

o https://www.aes.org/technical/mlai/ (https://www.aes.org/technical/mlai/)



https://www.aes.org/technical/mlai/
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Panelists, Topics

¢ Gordon Wichern, MERL: High level perceptual loss functions, phase and magnitude

e Renato Profeta, Gerald Schuller, Imenau University of Technology: Perceptual loss functions:
psycho acoustic models and loss functions

e Stefan Goetze, George Close, University of Sheffield: GAN-based perceptual metric prediction
for speech enhancement

e Martin Strauss, Bernd Edler, AudiolLabs Erlangen: Perceptually motivated conditional input for

Flow-based speech enhancement
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Changes for the Better

Audio Loss Functions in the Time and Frequency Domain

Gordon Wichern
15314 Audio Engineering Convention - NYC
October 20, 2022

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)
Cambridge, Massachusetts, USA
http://www.merl.com
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~weecRc  Audio Source Separation:

Changes for the Better

» Separate a mixed signal into its components
» Unlike labeling tasks, we listen to the output

Fields of Application

/ Music Source Separation \ npeech Enhancement & Separation\ / Speech-SFX-Music Separation \

” >3
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TR IO - R ! : Wil - b

B@ Music

= ./,’: 0 )))Jr%ﬁ Soundtrack @))) Speech

@@= Sound Effects

Petermann, D., Wichern, G., Wang, Z.-Q., Le Roux, J., "The Cocktail Fork Problem: Three-Stem
Audio Separation for Real-World Soundtracks", IEEE International Conference on Acoustics,
© MERL Speech, and Signal Processing (ICASSP), April 2022, pp. 526-530.
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Changes for the Better

SFX Dataset

>

Speech
Dataset

© MERL

Deep Learning-based Source Separation Pipeline

Source 1

+

Source 2

Mixture

oo

+

Source 3

-

Deep
Neural
Network

Estimate 1

/ Estimate 2

Ny Estimate 3

» Two Key Design Decisions:
> Deep Neural Network
» Operate on waveforms
» Operate on spectrograms
» Loss Function
» Time domain (waveform)
> Frequency domain (spectrogram)

Loss
Function

Source 1

Source 2

wa

Source 3

-




wieeme  Frequency Domain (Magnitude Spectrogram)-based Loss Functions

Changes for the Better

= Deep learning revolution began with images (e.g., ImageNet)
= Magnitude spectrograms are an image
= Magnitude correlates strongly with human perception

=  We can weight magnitude based on psychoacoustic models

Mixture (Time-frequency)

S Y g
i ¥ %
e o T

Mixture (Time)

Frequency

(3 =9 - Rt Sy
: __',f__"g__:‘-";*.’_‘;*'\-‘:‘.'*“‘
P s

© MERL



S UEEH Masking-based audio source separation

Changes for the Better

» Classify the source each TF-bin belongs to

» Estimated source = mask * mixture

Estimates (Time-frequency)

Mixture (Time)

!

Frequency

VAR

© MERL
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Changes for the Better

Frequency Domain (Magnitude Spectrogram)-based Loss Functions

* Mean square error/Mean absolute

How to compare? error on magnitude spectrum
W r

Mask-based classification loss

Typically we use noisy phase, only
estimate magnitude

Estimated sources Training targets

Mixture spectrogram T RERRKAREL|

M [ TR - Complex spectrogram loss

— Complex numbers now fully
supported in most deep learning
toolkits

— Similar to waveform losses

b
Y

Separator

Weight spectrum based on
perceptual knowledge

© MERL



2 MITSUBISHI
ELECTRIC

Changes for the Better

Bias Models for Interference and Artifacts

* Fundamental trade-off in source separation
— Interference reduction
— Artifact introduction

* In listening tests, artifacts tend to be more objectionable

* Incorporate bias in magnitude spectrogram loss
— Estimate less than ground truth (high weight)
— Estimate greater than ground truth (low weight)

Mixture Estimate Ground Truth




‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better

Time Domain (Waveform) Loss Functions

* Spectrograms have many parameters we must hand-select

* Major contribution of deep learning revolution is we can learn features

e STFT features often require long window-sizes (high latency)

* Time-domain models work well with short windows (low-latency)

* Time domain loss functions can preserve spatial cues

* Mean-square (absolute) error on waveforms

e SNR-based loss functions

— Scale invariant
— Shift-invariant
— Filter-invariant

© MERL

Mixture
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Deep
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Estimate 1
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SRS The Phase Compensation Problem

Changes for the Better

Wang, Z.-Q., Wichern, G., Le Roux, J., "On The Compensation Between Magnitude and Phase in Speech Separation", |IEEE Signal Processing Letters,

DOI: 10.1109/LSP.2021.3116502, Vol. 28, pp. 2018-2022, November 2021.

* Waveform and complex spectrogram models must estimate phase
e Estimating phase is hard

* Bad phase estimates will hurt magnitude and cause artifacts
— Especially at low SNR

Phase Error less than 90 deg.

>

AJEU!BELU|\

© MERL

Phase Spectrogram

Phase Error greater than 90 deg.
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https://ieeexplore.ieee.org/document/9552504
https://dx.doi.org/10.1109/LSP.2021.3116502
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Changes for the Better

Magnitude Loss for Time Domain Models

Loss Function

_ Estimates Targets
Estimate 1
i 'STFT! gl [
T

Mixture

/ Estimate 2

b -
~ "

Deep Y AL
Neural ->‘ "*‘HF’ ISTFTI _>
\ Estimate 3

Network |
;:WWWH ISTFT] g

_ Noisy Speech Separation

. . SI-SDR PESQ
* Perceptual evaluation of speech quality (PESQ)
— Based on spectrogram magnitude Ml 8 1.36
* Scale-invariant source to distortion ratio (SI-SDR) iEEe s | 5 Ll
— Compares time domain signals Magnitude Loss ~ -9.24 1.9
— Requires phase alignment VI — -

Magnitude Loss
© MERL
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Changes for the Better

Take-Aways

* Time-domain (waveform) neural networks have multiple advantages
— Strong performance
— Low latency
— No feature engineering

* Waveform loss functions
— Preserve spatial cues
— Artifacts due to poor phase estimates

* Magnitude spectrogram loss functions
— Correlate with human perception
— Perceptual weighting
— Can trade-off artifact/Interference
— No time-alignment when estimating phase

* Use waveform+magnitude loss
— Relative weights depend on application

© MERL
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Link to the following presentation including soundfiles:
https://tuilmenauams.github.io/PsychoacousticLoss/



https://tuilmenauams.github.io/PsychoacousticLoss/

©AEs) ,
= Perceptual Loss Function

Gerald Schuller ILMENAU UNIVERSITY OF
Renato Profeta TECHNOLOGY

Goal: Loss function which favors what sounds
better to the human ear

* Depending on the temporal/spectral shape of the noise, the ear favours one over the
other, depsite the same noise power

Problem: Popular and for gradient descent effective
loss functions like MSE don’t reflect these ear
preferences

® Examples
® Sound with spectrally flat noise from PCM quantization.

® Sound with psychoacoustically spectrally shaped noise, with even higher noise power.

Evalutation with MSE

® Evaluating these example with the Mean Square Error (MSE) loss favors the first, noisy,

example, wrongly!

Perceptual Loss Function using a Psycho-Acoustic
Prefilter

* A psycho-acoustic prefilter uses a linear time-varying filter to normalize an audio signal
to its psycho-acostic masking threshold.

® This is generated by a psycho-acoustic model, similar to what is used in audio coders.

e After this prefilter, we have a new signal or domain and we apply the MSE loss function
there.



Psycho-Acoustic Prefilter Example

Musical exerpt: Slash - Anastasia, Released: 2012, Album: Apocalyptic Love

# Imports

import torch

import torchaudio

import IPython.display as ipd

# Load audio files

audio_wav, sr_wav = torchaudio.load('audio_original.wav")
audio_mp3, sr_mp3 = torchaudio.load('audio_mp3_128k.wav")
audio_quantized, sr_wav = torchaudio.load('audio_quantized.wav')

# Playback

print('Example Signal Orignal (PCM 16-bit 44.1kHz)')
display(ipd.Audio(audio_wav,rate=sr_wav))

print('Example Signal MP3 128k"')
display(ipd.Audio(audio_mp3,rate=sr_mp3))

print('Example Signal Quantized (choosen quantization factor)')
display(ipd.Audio(audio_quantized,rate=sr_wav))

Example Signal Orignal (PCM 16-bit 44.1kHz)

P 0:00/0:05 o—— )

Example Signal MP3 128k

» 0:00/0:05 e——— ) @

Example Signal Quantized (choosen quantization factor)

P 0:00/0:05 o——— )

Mean Squared Error (MSE) Loss

® One of the most common loss functions, widely used in many different applications.
® |t assesses the average squared difference between the observed and predicted values.

Reference:

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html

# MSE Loss

loss_mse = torch.nn.MSELoss()

mse_mp3_original = loss_mse(audio_mp3,audio_wav)

print('MSE Loss (mp3 and original):', mse_mp3_original*100)
mse_quant_original = loss_mse(audio_quantized,audio_wav)

print('MSE Loss (quanitzed and original):', mse_quant_original*100)

MSE Loss (mp3 and original): tensor(5.8766)
MSE Loss (quanitzed and original): tensor(1.3066)

Observe:


https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html

® The MSE loss of the mp3 is significantly greatar than the MSE loss of the quantized
audio even though the perceived hearing quality of the mp3 is significantly superior.

Psycho-Acoustic Pre-Filtering + MSE

® A Psycho-Acoustic Model is used to generate filters that are applied to each block in
the time-frequency domain.
® Computational expensive.

Reference:
Schuller, G. (2020). Filter Banks and Audio Coding. Springer International Publishing.
https://doi.org/10.1007/978-3-030-51249-1

# Load pre-filtered audio files

audio_wav_pref, sr_wav = torchaudio.load('audio _originalpref.wav')
audio_mp3_pref, sr_mp3 = torchaudio.load('audio_mp3_128kpref.wav')
audio_quantized_pref, sr_wav = torchaudio.load('audio_quantizedpref.wav")

# Pre-Filtering + MSE Loss

loss_mse = torch.nn.MSELoss()

mse_mp3_original = loss_mse(audio_mp3_pref[0,:],audio_wav_pref[0,:])
print('Pre-Filtering + MSE Loss mp3:', mse_mp3_original.numpy()*10000)
mse_quant_original = loss_mse(audio_quantized_pref,audio_wav_pref)
print('Pre-Filtering + MSE Loss Quanitzed:', mse_quant_original.numpy()*10000)

Pre-Filtering + MSE Loss mp3: 1.00347948318813
Pre-Filtering + MSE Loss Quanitzed: 1.4562977594323456

Observe:

* Now, calculating the same MSE Loss in the psycho-acoustic pre-filtered domain, the
MSE Loss for the mp3 audio is smaller than the MSE loss of que quantized sound.

Log Spectral Difference

® A distance measure (in dB) between log magnitudes of the spectra.
® Much less computational expensive.

® Can work well in certain applications.

Reference:
Rabiner, L. and Juang, B., 1993. Fundamentals of speech recognition. Englewood Cliffs, N.J.:
PTR Prentice Hall.

from 1sd_loss import LSDLoss

loss_1sd = LSDLoss()

1sd_mp3_original = loss_lsd(audio_mp3[0,:],audio_wav[0,:])
print('LSD Loss mp3:', lsd_mp3 original)

1sd_quant_original = loss_lsd(audio_quantized[9,:],audio_wav[0,:])
print('LSD Loss Quanitzed:', lsd_quant_original)

LSD Loss mp3: tensor(0.9744)
LSD Loss Quanitzed: tensor(1.9903)


https://doi.org/10.1007/978-3-030-51249-1

Observe:

® The MSE loss of the quantized audio is also greater than the one for the mp3 audio,
favouring the best sounding audio.

Multi Scale Spectral Loss

* More computational expensive than the LSD but less than the psycho-acoustic pre-
filtering.

® Given two audio files, we compute their (magnitude) spectrogram Si and SA'l
respectively, with a given FFT size i, and define the loss as the sum of the L1 difference
between Si and S as well as the L1 difference between log Si and log S The total
reconstruction loss is then the sum of all the spectral losses with different FFT sizes.

Reference:

Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, & Adam Roberts (2020). DDSP:
Differentiable Digital Signal Processing. In International Conference on Learning
Representations.

from asteroid.losses import SingleSrcMultiScaleSpectral

loss_multiScaleSpectral = SingleSrcMultiScaleSpectral()

multiScale _mp3_original = loss_multiScaleSpectral(audio_mp3_pref,audio_wav_pref)
print('Multi Scale Spectral Loss mp3:', multiScale_mp3_original.numpy()/1000000)
multiScale_quant_original = loss_multiScaleSpectral(audio_quantized_pref,audio_wav_
print('Multi Scale Spectral Loss Quanitzed:', multiScale_quant_original.numpy()/16¢

Multi Scale Spectral Loss mp3: [1.14763687]
Multi Scale Spectral Loss Quanitzed: [2.28411725]

Observe:

® The MSE loss of the quantized audio is also greated than the one for the mp3 audio,
favouring the best sounding audio.

Results

* Some losses favor the better sounding audio, while others don't.

® The psycho-acoustic filtering makes use of psycho-acoustic effects of the human
hearing system and can be used in combination with a loss funcion in the design of a
psycho-acoustically perceptual loss function.

* We can also transform the audio to a 'psycho-acoustic pre-filter domain' and perform

different processing in this domain.
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GAN-based Perceptual Metric
Prediction for Speech
Enhancement

Stefan Goetze, Geoge L. Close

{s.goetze, giclosel}@sheffield.ac.uk

1534 AES Convention

Teaching Al to hear like we do: psychoacoustics in machine learning
Oct 20th 2022, New York
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Motivation

e Single channel speech enhancement still an active research area
e Mean Squared error (MSE) distance based loss functions between
enhanced and clean reference speech do not consider human perception
e There exist many metrics which are designed with human perception in
mind:
o STOI - intrusive measure of speech intelligibility
o PESQ - intrusive measure of speech quality
e PESQ (and other metrics) may be unsuitable as loss functions due to non
linearities
e Design loss functions derived from metrics which incorporate a model of
human perception



University

w UK Research
2 Of and Innovation
Sheffield.

Problem Definition — Signal Enhancement

2 Centre for
ﬂg Doctoral
275 Training
2

Noisy Environment

O e -
‘ Speech Enhancement
0 wo_ y(t) 5(t) @

Goal is to recover the clean speech from the noisy mixture from the microphone
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Wiener weighting rule =+ el
. . ———» h[n] > >
¢ Wienerfilter *
hopt[n] = E{y*[n] -slnl} _ Psyln]
g E {Mnllz} Dyy[n] sln]

» Problem: Dependency of unknown clean speech signal s[n]
» Reformulation in terms of auto-power spectral densities possible

h[n] sl 0 e
®gs[n] + Pnnln] e /
¢ Spectral subtraction o

£ a0

cbyy [n] — cpnn [n] 40

h[n] =
cbyy [n] 50
-6930 -20 -10 0 10 20 30
[11J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth compression of noisy speech,” Proc. IEEE,1979. SNR3[n]

[2] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. ASSP, 1979
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Weighting Function of Ephraim & Malah

Approach

Sound Pressure

Sound Pressure Level
140 dB Threshold of Pain

i@

0 Threshold of Hearing

SNRS[n] + 1

SNRS[n]
hLSA['n] = W“rz]-l-l
Wn] = SNR; [n] SNRY[n]

: Minimise the logarithmic error/loss between clear speech and filter output

20

10

-0 ©

SNRY[n] — 1 [dB] SNR:[n] [dB]

[11Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean—square error log-spectral amplitude estimator,” IEEE Trans. ASSP, 1985.
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Use of Psychoacoustically Motivated Targets

e Approach: Hide noise distortion under the masking threshold

h[ND[n] = min (“% + Cn, 1)

IND: inaudiable noise distortion

DIsLT =

Three approximations for spreading function:

LDS
>

—— Sekey-Hanson
—— Triangle function|

absolute threshold

/ of hearing
_—— masker

masking i\
threshold / \\

g [“]

Sound pressure in dB

_ _Oyln] = f(6lnD)

Spreading function in dB

~ masked signal

Bark

| |
1 fo f 10  Frequency
in Hz

hopt[n] hyaoln]
[1]1 S. Gustafsson, “Enhancement of Audio Signals by Combined Acoustic Echo Cancellation and Noise Reduction”, PhD thesis, Aachen, 1999
[2] S. Goetze, V. Mildner, KD Kammeyer: “A Psychoacoustic Noise Reduction Approach for Stereo Hands-Free Systems”, AES 120th Convention, 2006 6
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Neural Network-based Signal Enhancement

NN-based approaches are able to deal with non-stationary disturbances

Neural Network

Mapping

Degraded
Features

Neural Network

Masking
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Use of Psychoacoustically Motivated Targets

e Various different quality metrics exist
e Approach: Directly optimise for quality

Signal-based quality measured Psychoacoustically motivated measures
Acronym Measure Acronym Measure
SSRR Segmental Signal to Reverberation Ratio BSD Bark Spectral Distortion
SRRE Signal to Reverberation Ratio Enhancement Ror Reberberation Dacay Tail Measure
FWSSRR Frequency Weighted SSRR PSM Perceptual Similarity Measure
WSS Weighted Spectral Slope PSM, Perceptual Similarity Measure (focus on low correlations)
OMCR Objective Measure of Colouration in Reverberation
APSM PSM ,enhancement”
dis, deep Itakura-Saito-Measure, Cepstral Distance
APSM; PSM ,enhancement*
diar » iR Log Area Ratio, Log Likelihood Ratio
PESQ Perceptual Evaluation of Speech Quality
LSD Log Spectral Distortion
SRMR Speech to Reverberation Modulation Energy Ratio

e Are these metrics differentiable to be used as a loss?
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Short-Term Speech Intelligibility (STOI)

e Only few metrics are simple enough to be differentiable

DISLT =

x (Clean speech) J X; (m)
X.
DFT-based Short-time J.m
=P 1/3 octave band segmentation l
decomposition
T Correlation jm l d
N=30 Coefficient J&’I jom
e - Jm
v (Degraded speech)

W .'vr"'ﬂT'B‘T"'f'h"T'ﬂ't l —
‘ ‘ 3 ' y 3 jm
1/:? é:;abvzs::no 1 l ‘ ‘ N ; Short-time 4 m. Normalization + J
decomposition ' A segmentation clipping

*
B=-15

[1] C. H. Taal, et. al, “An algorithm for intelligibility prediction of time—frequency weighted noisy speech”, IEEE Trans. ASLP, 2011.
[2] Fu et al, “End-to-End Waveform Utterance Enhancement for Direct Evaluation Metrics Optimization by Fully Convolutional Neural Networks”, TASLP, 2018
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Perceptual Evaluation of Quality (PESQ) Metric

DIsLT =

e Commonly used metric PESQ is not differentiable.

Rei-’crence Level | | Input | | <" Auditory
signal align filter transform
Prediction of
Time . ... perceived
align and Di_sot::;:i?lce ' Coiniﬁ:;e — speech
equalise D g moceing quality
Degraded » Level | | Input — Auditory Identify bad
signal align filter transform intervals
A
Re-align bad intervals i

Figure 1: Structure of perceptual evaluation of speech quality (PESQ) modecl.

[1] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of
telephone networks and codecs,” in ICASSP’01, 2001.



H T Centre for
f-‘ S L Doctoral
fg Training

Of and Innovation

Sheffield.

Differentiable PESQ?

e Approaches exist, but are only approximations with a clipping factor

University % UK Research

B. Syvmmerrical and Asymmetrical Disturbances Computation

Here we simplify the computation of the symmetrical distur-
bance vector proposed in PESQ by applying a center-clipping
operator over the absolute difference between the loudness spec-
tra as,

10.2.9 Calculation of the disturbance density

The signed difference between the distorted and original loudness density is computed. When this
difference is positive, components such as noise have been added. When this difference is negative,
components have been omitted from the original signal. This difference array is called the raw
disturbance density.

The minimum of the original and degraded loudness density is computed for each time-frequency
cell. These minima are multiplied by 0.25. The corresponding two-dimensional array is called the
mask 3 following rules are applied in each time-frequency cell:

disturbance density is positive and larger than the mask value, the mask value is
from the raw disturbance.

The net effect is that the raw disturbance densities are pulled towards zero. This represents a dead
zone before an actual time frequency cell is perceived as distorted. This models the process of small
differences being inaudible in the presence of loud signals (masking) in each time-frequency cell.
The result is a disturbance density as a function of time (window number n) and frequency, D(f),..

PESQ Specification

m; = (.25 - min (§;,s;), (6)

where | - |, min(-) and max(-) are applied element-wise and O is a
zero-filled vector of length @ (note that, although non-derivable
at singular points, previous operators allow to compute a sub-
gradient for backpropagation at these points). This way, the
psychoacoustic process by which small spectra differences are
inaudible when loud signals are present is accounted for [23].
We obtain the asymmetrical disturbance vector as d,”’ =

d;”’ @r,, where ® indicates an element-wise multiplication
and r; is a vector of asymmetry ratios whose components are
computed from the Bark spectra as,

Rey = (_lw_) , =
B:Aq +€

The asymmetry ratio accounts for positive ([‘f‘,q > By ) and

negative (B; , < B, ,) differences between the enhanced and
the target spectra in the Bark domain by correspondingly apply-
ing a gain or an attenuation to the symmetrical disturbance. The
constants € and A, setto 50 and 1.2 respectively (see next subsec-
tion), stabilize the ratio against very small Bark spectrum values
and magnify the effect of the resulting ratio, respectively. Prior
to the element-wise multiplication, asymmetry ratios R, , are
upper-bounded by a maximum value of 12, while those lower
than 3 are set to 0, as in [23].

Finally, we can obtain the symmetrical and asymmetrical
disturbance terms in a vectorized way, for each frame. as
weighted norms of the symmetrical and asymmetrical vectors,

function based on the perceptual evaluation

of the speech quality”, 2018
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Baseline System: MetricGAN+ [1]

Training D

e Train an additional network to S pEsQ seore ¢
predict the behaviour of the \ [[ wsetos
. Quality-Net | Predicted
metrIC ; : @) TR Alternately
Take inference of this predictor Srrel \W i

enhanced spectrogram . .
P - I'raining G

to form loss function for speech

Clean spectrogram

enhancement network
Alternately Maximum
The speech enhancement updated N Hl
netWOrk Gnd thiS metriC | T | Enhancement Mask |, Quality-Net | Pred?::ji "
prediction network are trained : e ﬁg} EE Qs
Noisy spectrogram X Fixed weights

adversarially as Generator and

D| SC ri m| nator in a GAN [1] “MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement” -
Fu et al, Interspeech,2021

Back-propagation

12



The

2 \ University UK Research
I7 @ .
ﬁf)J SLT ...... g (S)}fl offield. and Innovation
Metric Prediction T |
Discriminator e NG N o B e B
s —¢ > > v
A
« Neural model tasked with : s -
. . . " Metric : Normalization A
predicting the target metric Q.s)
« The signals tested are: Lp mct = E[(D(Sy, sf) 1)%+
o Clean speech s (D(Sf,Sf) (3, 5))2+
- Enhanced speech
(output of Generator) 3 . (D(Xy,8y) — ( 5))°]
- Noisy speech z T e —>(TT .—».—» o
o Loss function is MSE between fegues. St — x4

true and predicted score

Bl

—»Metric
Prediction
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Speech

X

Enhancement
outputting a magnitude EE -
« Loss function is based entirely Lgyva+ = E[(D(Sf, Sr)— 1)2]

Generator
. e-Syn 8 g S
« Neural model tasked with Xy texmxf—n»?“(oi&)‘“» e T
i . Clamp s > 1
‘mask’ to be multiplied by the X
noisy features
on inference of Discriminator \I Normalised
optimum PESQ
network
o Godlis to produce outputs reotures
with ‘perfect’ score of 1 14
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N Lp,mc+ = E[(D(Sy,Sy) — 1)°+
JZ - o | . Sy, "D D(Py,Sy) . - (D(Sf’ Sf) (§ ))
(D(Xy,85) - Q'(x,5))%]
Alternately trained every epoch
X 5
" _ Re-Synth| ~
A S % OLA ™ Lgmc+ = E[(D(Sy,Sy) — 1)°]
M
G glamp T
=05

LX

15
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D= S oo MetricGAN+/- e,
I Lpmc+/- = E[(D(Sy,8¢) — 1)*+
e LA BN v I e B B (D(Sy,S¢) — Q'(3,5))%+
(D(Xy,Sf) — Q' (z,5))*+
[(D(Ys.85) - Q4. 9))]

Alternately trained every epoch

X

X

Re-Synth| * <1 Y
X; exp(Xy - 1) (OL};\) =Y X; s Rfoi)2§h—)
Mg M,
G Clamp p Clamp
i €=05) ) (€=0.5)
/X

/X

LQ,MG+ = E[(D(Sf, Sf) — 1)2] Hyperparameter

value

ILN,MG+/— — E[(D(Yfasf) _ w)z]v for0 <w < 17I

[1] G. Close, T. Hain, and S. Goetze: “MetricGAN+/-: Increasing Robustness of Noise Reduction on Unseen Data“, EUSIPCO22, 2022
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Results: VoiceBank-DEMAND Testset

Model PESQ | STOI Csig Cbak Covl
Noisy 1.97 92.0 3.35 2.44 2.63
SEGAN 2.42 92.5 3.61 2.61 3.01
MetricGAN+ 3.05 93.0 4.03 2.87 3.52
(PESQ)

MetricGAN+/- 3.22 91.3 4.05 2.94 3.62
(PESQ)

Improves over baseline in terms of PESQ, Composite measure and comparative in STOI

[1] G. Close, T. Hain, and S. Goetze: “MetricGAN+/-: Increasing Robustness of Noise Reduction on Unseen Data“, EUSIPCO22, 2022
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Results: CHIME3 Testset
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Model PESQ | STOI Csig Cbak Covl
Noisy 1.32 65.0 2.79 1.40 1.99
MetricGAN+ 1.84 66.6 2.86 2.12 2.27
(PESQ)

MetricGAN+/- 1.97 65.3 2.89 215 2.33
(PESQ)

Improves over baseline in terms of PESQ, Composite measure and comparative in STOI

[1] G. Close, T. Hain, and S. Goetze: “MetricGAN+/-: Increasing Robustness of Noise Reduction on Unseen Data“, EUSIPCO22, 2022
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Conclusions

e Psychoacoustically motivated metrics beneficial in speech
enhancement loss

e Neural networks outperform signal-processing-based approaches

e Incorporating perceptual knowledge into speech enhancement is
possible

o Non-differentiable metrics can be used in losses using GAN
structures

o Networks have to be exposed to a wide range of signal quality

o Additional predictor networks can be used: MetricGAN+/-
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Thanks for listening

e Any questions?

Stefan Goetze, Geoge L. Close
{s.goetze, glclosel} @sheffield.ac.uk

UK Research
and Innovation

21



INTERNATIONAL AUDIO LABORATORIES ERLANGEN - A U D I 0
A joint institution of Fraunhofer IIS and Universitat Erlangen-Nirnberg o\ L A B S

Perceptually Motivated Conditional Input for

Flow-Based Speech Enhancement

AES Workshop
Teaching Al to hear like we do: psychoacoustics in machine learning

Martin Strauss and Bernd Edler
martin.strauss@audiolabs-erlangen.de
bernd.edler@audiolabs-erlangen.de

20.10.2022

\

ZZ Fraunhofer

|EAuzldthl = 1S



Introduction
Speech enhancement (SE)

= Improve (perceptual) quality of speech degraded by
background noise

= Predominant approach: Deep Neural Networks (DNN)

m Often application of a separation mask

(© Audiolabs 2022 Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement A U D I 0
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Introduction
Generative models for SE

= Qutline probabilistic process
= Examples:

» Generative Adversarial Networks [1]
» Diffusion probabilistic models [2]
» Normalizing flows [5]
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Normalizing flows
Fundamentals

® Invertible neural networks
x = f(z), z=f"1(x), x,z € RP
= Change of variables
Px(x) = p2(2) |det (J(x))|
= Optimization of maximum likelihood

= Integration of perceptual loss criteria difficult
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Normalizing flows
Architecture [5]

Training ’—[ W ] { W ]‘. Enhancement
: 1

Flow block . .
: Flow block
inv.
Flow block Flow block
T [}
)
' ‘ » clean enhanced W
-~ J R —
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Conditional input
Time domain

Time domain input processed by a conv layer

MMW,[ —————| conv Flow block

noisy speech

® |nitial experiments show promising results

= Approach for further improvement:
perceptually motivated pre-processing
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Conditional input
Mel spectrogram

® Frequent choice or conditional input representation:
Mel spectrogram (e.g. in neural vocoders [4, 3])

M“Wy Mel | conv Flow block

noisy speech

® Resulting quality |

u Possible reason: Low time resolution
due to weighted summation of STFT output magnitudes

(© Audiolabs 2022 Perceptually Motivated Conditional Input for Flow-Based Speech Enhancement
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Conditional input
Mel spectrogram

Spectral weights for band indices 0, 3, 7, 11, ..., 79

0'00 1000 2000 3000 4000 5000 6000 7000 8000

f[Hz]
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Conditional input
All-pole gammatone filterbank (APG) [6]

= Bark spaced all-pole gammatone filterbank (APG)

= Conditional input representation: output magnitudes
of complex valued IIR filters

APG|—| conv Flow block

noisy speech
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Conditional input
Magnitude frequency responses for band indices 0, 3, 7, 11, ... , 79
1.0

0.8

0.6

[HOI

0.4 ‘

0.2 [|lf

0.0 MM AVAVAVAA AN AN
-0 1000 2000 3000 4000 5000 6000 7000 8000
f[Hz]
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Conditional input
APG

Magnitude of the impulse response

0.025
—— 1stband
—— 10th band
0.020 —— 20th band
—— 30th band
—— 40th band
0.015 —— 50th band
= — 60th band
(=
= —— 70th band
0.010 '\ ~—— 80th band
0.005

0'0000 200 400 600 800 1000

Samples [n]
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Results
Listening test [6]

*Ip35 $MetricGAN+ W CDiffuSE
§ SE-Flow HSE-Flow-Mel | SE-Flow-APG

b1

80
good

604
fair *’ i Y

Htd
o
=t

75d8 25dB All items
input SNR input SNR
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Results
Computational metrics [6]

Table: Computational evaluation results for the test set
(VoiceBank-DEMAND). Mean values. Best results in bold.

Method PESQ CSIG CBAK COVL STOI 2f-model

Noisy 197 335 245 263 092 31.70
CDiffuSE [2] 252 372 291 310 091 33.65
MetricGAN+ [1] 3.13 4.08 3.16 3.60 0.93 34.36

SE-Flow 241 379 311 3.09 0.93 46.92
SE-Flow-Mel 1.63 284 200 219 085 35.63
SE-Flow-APG 205 330 251 265 0.89 40.16
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Listening examples

ed from the VoiceBank-DEMAND testset [7]
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Conclusions

SE-Flow and SE-Flow-APG show favourable perceptual
performance

SE-Flow-APG overcomes Mel induced problems
SE-Flow-APG remains stable in lower SNR

Listening test results not reflected in computational metrics
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Thank you!
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