AES E-Library

← Back to search

Theoretical and Experimental Comparison of Three Methods for Compensation of Electrodynamic Transducer Nonlinearity

Based on a simplified nonlinear lumped-element model of an electrodynamic loudspeaker, nonlinear compensators are derived, simulated, and implemented on a digital signal processor (DSP). The model comprises three major nonlinearities: voice-coil excursion dependent force factor, (suspension) stiffness, and self-inductance. A Volterra series expansion is used to estimate nonlinear parameters from distortion measurements. The first compensation method utilizes the second-order s-domain kernel of this expansion to synthesize a second-order compensator. The other two methods employ extended mirror filter and state-space techniques, respectively. All three approaches are compared with respect to needed dynamic elements, computational complexity, robustness, and effectiveness for the case of a low-frequency direct radiator in a closed cabinet.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Permalink: https://aes2.org/publications/elibrary-page/?id=12134


(1809KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content