AES E-Library

← Back to search

Fast Monaural Separation of Speech

We have investigated the possibility of separating signals from a single mixture of sources. This problem is termed the Monaural Separation Problem. Lars Kai Hansen has argued that this problem is topological tougher than problems with multiple recordings. Roweis has shown that inference from a Factorial Hidden Markov Model, with non-stationary assumptions on the source autocorrelations modelled through the Factorial Hidden Markov Model, leads to separation in the monaural case. By extending Hansens work we find that Roweis` assumptions are necessary for monaural speech separation. Furthermore we develop a Factorial hierarchical vector quantizer yielding a significant decrease in complexity of inference.


Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Session subject:


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

E-Libary location:
Choose your country of residence from this list:

Skip to content