AES E-Library

A Non-linear Rhythm-Based Style Classifciation for Broadcast Speech-Music Discrimination

Speech-Music discriminators are usually designed under some rigid constrains. This paper deals with a more general Speech-Music Discriminator successfully used in AIDA project. The system is based on a Hidden Markov Model style classification process in which the styles are grouped into two major categories: Speech or Music. The goals of this sub-system are (1)the expandible possibilities with the addition of some new styles (like "phone female voice"), (2)the use of new rhytmical descriptors in combination with other typical ones and (3)the robustness of our speech/music discriminator in many different environments by using some Mathematical Morphology and non-linear post-processing techniques. The techniques used in our system allow a fast track in changes between styles and, thus, typical confusions in commercials can be easily cleaned. The accuracy of this system can be up to a 94.3% in broadcast radio environment.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=12779


(232KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content