AES E-Library

Music Genre Categorization in Humans and Machines

Music Genre Classification is one of the most active tasks in Music Information Retrieval (MIR). Many successful approaches can be found in literature. Most of them are based on Machine Learning algorithms applied to different audio features automatically computed for a specific database. But there is no computational model that explains how musical features are combined in order to yield genre decision in humans. In this work we present a listening experiment where audio has been altered in order to preserve some properties of music (rhythm, harmony, etc) but at the same time degrading other ones. Results are compared with a series of state-of-the-art genre classifiers based on these musical properties and we draw some lessons from that comparison.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=13813


(255KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content