AES E-Library

Polyphonic Piano Transcription Based on Spectral Separation

We propose a discriminative model for polyphonic piano transcription. Spectral features are obtained individually for each note. To solve the overlapping partial problem, we apply spectral separation by estimating the spectral envelope for each note. For classifying purposes, support vector machines (SVM) are trained on the spectral energy inferred from these spectral features. We apply a scheme of one-versus-all (OVA) SVM classifiers to discriminate frame-level note instances. To decrease the high frequency notes residual energy due to the downward notes shared partials, a method to cancel the interferences from the downward notes to the upward notes has been developed. The classifier output is filtered with a hidden Markov model. Our approach has been tested with synthesized and real piano recordings obtaining very promising results.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=14514


(247KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content