AES E-Library

SoundTorch: Quick Browsing in Large Audio Collections

Musicians, sound engineers, and foley artists face the challenge of finding appropriate sounds in vast collections containing thousands of audio files. Imprecise naming and tagging forces users to review dozens of files in order to pick the right sound. Acoustic matching is not necessarily helpful here as it needs a sound exemplar to match with and may miss relevant files. Hence, we propose to combine acoustic content analysis with accelerated auditioning: Audio files are automatically arranged in 2D by psychoacoustic similarity. A user can shine a virtual flashlight onto this representation; all sounds in the light cone are played back simultaneously, their position indicated through surround sound. User tests show that this method can leverage the human brain`s capability to single out sounds from a spatial mixture and enhance browsing in large collections of audio content.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=14696


(400KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content