AES E-Library

Evolutionary Optimization for Hearing Aids of Computational Auditory Scene Analysis

Computational auditory scene analysis (CASA) provides an excellent means to improve speech intelligibility in adverse acoustical situations. In order to utilize algorithms of CASA in hearing aids, sets of algorithmic parameters need to be adjusted to the individual auditory performance of the listener and the acoustic scene in which they are employed. Performed manually, the optimization is an expensive procedure. We therefore developed a framework in which algorithms of CASA are automatically optimized by the principles of evolution, i.e., by a genetic algorithm. By using the speech transmission index (STI) as an objective function, the presented framework presents a holistic routine which is solely based on psychoacoustical and physiological models to improve and to assess speech intelligibiltiy. The initial listening test revealed a discrepancy between the objective and subjective assessement of speech intelligibility, which suggests a review of the objective function. Once the objective function is in accordance with the individual perception of speech intelligibility, the presented framework could be applied in the optimization of all complex speech processors and therewith accelerate their assessment and application.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=14933


(436KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content