AES E-Library

Study and Characterization of the Odd and Even Nonlinearities in Electrodynamic Loudspeakers by Periodic Random-Phase Multisines

In acoustic echo cancellation (AEC) applications, often times an acoustic path from a loudspeaker to a microphone is estimated by means of a linear adaptive filter. However, loudspeakers introduce nonlinear distortions which may strongly degrade the adaptive filter performance, thus nonlinear filters have to be considered. In this paper, measurements of three types of loudspeakers are conducted to detect, quantify and qualify nonlinearities by means of periodic random-phase multisines. It is shown that odd nonlinearities are more predominant than even nonlinearities over the entire frequency range. The aim of this paper is then to demonstrate that third-order (cubic) adaptive filters have to be used, which is in clear conflict with the extensive, almost unique, use of second-order (quadratic) Volterra filters.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=15036


(1233KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content