AES E-Library

A Robust Audio Feature Extraction Algorithm for Music Identification

In this paper, we describe a novel audio feature extraction method, which can effectively improve the performance of music identification under noisy circumstances. It is based on a dual box approach that extracts from the sound spectrogram point clusters with significant energy variation. This approach was tested in a song finder application that can identify music from samples recorded by microphone in the presence of dominant noise. A series of experiments show that under noisy circumstances, our system outperforms current state-of-the-art music identification algorithms and provides very good precision, scalability and query efficiency.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=15603


(355KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content