AES E-Library

Physical Model of the Slide Guitar: An Approach Based on Contact Forces

In this paper we approach the synthesis of the slide guitar, which is a particular play mode of the guitar where continuous tuning of the tones is achieved by sliding a metal or glass piece, the bottleneck, along the strings on the guitar neck side. The bottleneck constitues a unilateral constraint for the string vibration. Dynamics is subject to friction, scraping, textured displacement and collisions. The presented model is physically inspired and is based on a dynamic model of friction, together with a geometrical model of the textured displacements and a model for collisions of the string with the bottlenck. These models are suitable for implementation in a digital waveguide computational scheme for the 3D vibration of the string, where continuous pitch bending is achieved by allpass filters to approximate fractional delays, friction is captured by nonlinear state-space systems in the slide junction and textured displacements by signal injection at a variable point in the waveguide.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=16228


(300KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content