AES E-Library

A Knowledge-Engineered Autonomous Mixing System

In this paper a knowledge-engineered mixing engine is introduced that uses semantic mixing rules and bases mixing decisions on instrument tags as well as elementary, low-level signal features. Mixing rules are derived from practical mixing engineering textbooks. The performance of the system is compared to existing automatic mixing tools as well as human engineers by means of a listening test, and future directions are established.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=17011


(998KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content