AES E-Library

Tonic-Independent Stroke Transcription of the Mridangam

In this paper, we use a data-driven approach for the tonic-independent transcription of strokes of the mridangam, a South Indian hand drum. We obtain feature vectors that encode tonic-invariance by computing the magnitude spectrum of the constant-Q transform of the audio signal. Then we use Non-negative Matrix Factorization (NMF) to obtain a low-dimensional feature space where mridangam strokes are separable. We make the resulting feature sequence event-synchronous using short-term statistics of feature vectors between onsets, before classifying into a predefined set of stroke labels using Support Vector Machines (SVM). The proposed approach is both more accurate and flexible compared to that of tonic-specific approaches.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=17102


(4506KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content