AES E-Library

Rhythmic Classification of Electronic Dance Music

Electronic dance music can be characterised to a large extent by its rhythmic properties. Besides the tempo, the basic rhythmic patterns play a major role. In this work we present a system that uses these features to classify electronic music tracks into subgenres. From each song, a drum pattern of 4 bars length is extracted incorporating source separation techniques, consisting of bass drum and snare drum events quantized to 16th notes. After determining the downbeat, the measure-aligned pattern serves as a feature in a k-nearest-neighbour classification task. The system is evaluated on a dataset containing excerpts from 400 songs from eight electronic subgenres. As a baseline, the classification using solely the tempo as a feature is performed, achieving a classification accuray of 66%. The additional feature of rhythm pattern increases the performance to 71%.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=17109


(258KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content