AES E-Library

Classification of Spatial Audio Location and Content Using Convolutional Neural Networks

This paper investigates the use of Convolutional Neural Networks for spatial audio classification. In contrast to traditional methods that use hand-engineered features and algorithms, we show that a Convolutional Network in combination with generic preprocessing can give good results and allows for specialization to challenging conditions. The method can adapt to e.g. different source distances and microphone arrays, as well as estimate both spatial location and audio content type jointly. For example, with typical single-source material in a simulated reverberant room, we can achieve cross-validation accuracy of 94.3% for 40-ms frames across 16 classes (eight spatial directions, content type speech vs. music).

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=17718


(851KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content