AES E-Library

A General Framework for Multichannel Speech Dereverberation Exploiting Sparsity

We consider the problem of blind multi-channel speech dereverberation without the knowledge of room acoustics. The dereverberated speech component is estimated by subtracting the undesired component, estimated using multi-channel linear prediction (MCLP), from the reference microphone signal. In this paper we present a framework for MCLP-based speech dereverberation by exploiting sparsity in the time-frequency domain. The presented framework uses a wideband or a narrowband signal model and a sparse analysis or synthesis model for the desired speech component. The proposed problems involving a reweighted $\ell_1$-norm, are solved in a flexible optimization framework. The obtained results are comparable to the state of the art, motivating further extensions exploiting sparsity and speech structure.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=18089


(190KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content