AES E-Library

Efficient Music Identification Approach Based on Local Spectrogram Image Descriptors

The diffusion of large music collections has determined the need for algorithms enabling fast song retrieval from query audio excerpts. This is the case of online media sharing platforms that may want to detect copyrighted material. In this paper we start from a proposed state-of-the-art algorithm for robust music matching based on spectrogram comparison leveraging computer vision concepts. We show that it is possible to further optimize this algorithm exploiting more recent image processing techniques and carrying out the analysis on limited temporal windows, still achieving accurate matching performance. The proposed solution is validated on a dataset of 800 songs, reporting an 80% decrease in computational complexity for an accuracy loss of about only 1%.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=18639


(3710KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content