AES E-Library

Speaker Identification for Swiss German with Spectral and Rhythm Features

We present results of speech rhythm analysis for automatic speaker identification. We expand previous experiments using similar methods for language identification. Features describing the rhythmic properties of salient changes in signal components are extracted and used in an speaker identification task to determine to which extent they are descriptive of speaker variability. We also test the performance of state-of-the-art but simple-to-extract frame-based features. The paper focus is the evaluation on one corpus (swiss german, TEVOID) using support vector machines. Results suggest that the general spectral features can provide very good performance on this dataset, whereas the rhythm features are not as successful in the task, indicating either the lack of suitability for this task or the dataset specificity.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=18753


(162KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content