AES E-Library

Deep Learning for Jazz Walking Bass Transcription

In this paper, we focus on transcribing walking bass lines, which provide clues for revealing the actual played chords in jazz recordings. Our transcription method is based on a deep neural network (DNN) that learns a mapping from a mixture spectrogram to a salience representation that emphasizes the bass line. Furthermore, using beat positions, we apply a late-fusion approach to obtain beat-wise pitch estimates of the bass line. First, our results show that this DNN-based transcription approach outperforms state-of-the-art transcription methods for the given task. Second, we found that an augmentation of the training set using pitch shifting improves the model performance. Finally, we present a semi-supervised learning approach where additional training data is generated from predictions on unlabeled datasets.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=18762


(617KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content