AES E-Library

Detection of Piano Pedaling Techniques on the Sustain Pedal

Automatic detection of piano pedaling techniques is challenging as it is comprised of subtle nuances of piano timbres. In this paper we address this problem on single notes using decision-tree-based support vector machines. Features are extracted from harmonics and residuals based on physical acoustics considerations and signal observations. We consider four distinct pedaling techniques on the sustain pedal (anticipatory full, anticipatory half, legato full, and legato half pedaling) and create a new isolated-note dataset consisting of different pitches and velocities for each pedaling technique plus notes played without pedal. Experiment shows the effectiveness of the designed features and the learned classifiers for discriminating pedaling techniques from the cross-validation trails.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=19209


(375KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content