AES E-Library

Automatic Masking Reduction in Balance Mixes Using Evolutionary Computing

Music production is a highly subjective task, which can be difficult to automate. Simple session structures can quickly expose complex mathematical tasks which are difficult to optimize. This paper presents a method for the reduction of masking in an unknown mix using genetic programming. The model uses results from a series of listening tests to guide its cost function. The program then returns a vector that best minimizes this cost. The paper explains the limitations of using such a method for audio as well as validating the results.Music production is a highly subjective task, which can be difficult to automate. Simple session structures can quickly expose complex mathematical tasks which are difficult to optimize. This paper presents a method for the reduction of masking in an unknown mix using genetic programming. The model uses results from a series of listening tests to guide its cost function. The program then returns a vector that best minimizes this cost. The paper explains the limitations of using such a method for audio as well as validating the results.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=19210


(552KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content