AES E-Library

Variable Fractional Order Analysis of Loudspeaker Transducers: Theory, Simulations, Measurements, and Synthesis

Loudspeaker transducer models with fractional derivatives can accurately approximate the inductive part of the voice coil impedance of a transducer over a wide frequency band, while maintaining the number of fitting parameters to a minimum. Analytical solutions to Maxwell equations in infinite lossy coils can also be interpreted as fractional derivative models. However, they suggest that the fractional order a  cannot be a constant, but rather a function of frequency that takes on values between 1/2 and 1. This paper uses Finite Element (FEM) simulations to bridge the gap between the theoretical first-principles approach and lumped parameter models using fractional derivatives. The study explores the dependence of a on frequency for idealized infinite and finite cores as well as in four real loudspeaker transducers. To better match the measured impedances and frequency-dependent a values we propose to represent the voice coil impedance by a cascade of R-L sections.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=19236


(404KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content