AES E-Library

Automatic Text Clustering for Audio Attribute Elicitation Experiment Responses

Collection of text data is an integral part of descriptive analysis, a method commonly used in audio quality evaluation experiments. Where large text data sets will be presented to a panel of human assessors (e.g., to group responses that have the same meaning), it is desirable to reduce redundancy as much as possible in advance. Text clustering algorithms have been used to achieve such a reduction. A text clustering algorithm was tested on a dataset for which manual annotation by two experts was also collected. The comparison between the manual annotations and automatically-generated clusters enabled evaluation of the algorithm. While the algorithm could not match human performance, it could produce a similar grouping with a significant redundancy reduction (approximately 48%).

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=19240


(215KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content