AES E-Library

Deep Neural Networks for Cross-Modal Estimations of Acoustic Reverberation Characteristics from Two-Dimensional Images

In augmented reality (AR) applications, reproduction of acoustic reverberation is essential for creating an immersive audio experience. The audio component of an AR experience should simulate the acoustics of the environment that users are experiencing. Earlier, sound engineers could program all the reverberation parameters in advance for a scene or if the audience was in a fixed position. However, adjusting the reverberation parameters using conventional methods is difficult because all such parameters cannot be programmed for AR applications. Considering that skilled acoustic engineers can estimate reverberation parameters from an image of a room, we trained a deep neural network (DNN) to estimate reverberation parameters from two-dimensional images. The results suggest a DNN can estimate the acoustic reverberation parameters from one image.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=19512


(883KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content