AES E-Library

← Back to search

Creating Real-Time Aeroacoustic Sound Effects Using Physically Informed Models

Aeroacoustics is a branch of engineering within fluid dynamics that encompasses sounds generated by disturbances in air, either by an airflow being disturbed by an object or an object moving through air. An example of a fundamental aeroacoustic sound source is the Aeolian tone, generated by vortex shedding as air flows around an object. A compact source model of this sound is informed from fluid dynamics principles, operating in real-time and presenting highly relevant parameters to the user. A swinging sword, Aeolian harp, and propeller are behavior models presented to illustrate how a taxonomy of real-time aeroacoustic sound synthesis can be achieved through physically informed modeling. Evaluation indicates that the resulting sounds are perceptually as believable as sounds produced by other synthesis methods, while objective evaluations reveal similarities and differences among these models, pre-recorded samples, and those generated by computationally complex offline methods.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Permalink: https://aes2.org/publications/elibrary-page/?id=19708


(354KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content