Skip to content

AES E-Library

Music Enhancement by a Novel CNN Architecture

This paper is concerned with music enhancement by removal of coding artifacts and recovery of acoustic characteristics that preserve the sound quality of the original music content. In order to achieve this, we propose a novel convolution neural network (CNN) architecture called FTD (Frequency-Time Dependent) CNN, which utilizes correlation and context information across spectral and temporal dependency for music signals. Experimental results show that both subjective and objective sound quality metrics are significantly improved. This unique way of applying a CNN to exploit global dependency across frequency bins may effectively restore information that is corrupted by coding artifacts in compressed music content.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=19762


(993KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938