AES E-Library

Prediction of hearing loss through application of Deep Neural Network

This paper describes a neural network designed to provide aid in the preventive diagnosis of hearing loss issues. Hearing loss is a widely widespread disability affecting millions of people worldwide. An anonymous dataset is used to train a neural network to evaluate hearing loss in prevention and early diagnosis with the aim of supporting health care by optimising time and cost. The system is tested using a second set of data and results in a correct evaluation of whether the patient is affected by hearing loss or not.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=20790


(859KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content