AES E-Library

Energy-Preserving Time-Varying Schroeder Allpass Filters and Multichannel Extensions

We propose time-varying Schroeder allpass filters and Gerzon allpass reverberators that remain energy preserving irrespective of arbitrary variation of their allpass gains or feedback matrices over time. We propose various ways of realizing the unitary matrix involved in the Schroeder structure, based on classic ladder and lattice filters and their generalizations. We show how to construct more elaborate structures including nestings and cascade, giving various strategies for reducing their implementation cost. Extending these algorithms to the multi-input, multi-output case yields time-varying, energy-preserving generalizations of Gerzon’s reverberator, providing a link between Schroeder allpass filters and Schelcht’s recently proposed “Allpass Feedback Delay Networks.” Stability proofs are given for common uses of Schroeder allpass filters, such as inside of Feedback Delay Network reference structures. Finally we give a substantial review of the properties of time-invariant Schroeder allpass filters.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Permalink: https://aes2.org/publications/elibrary-page/?id=21114


(2074KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content