AES E-Library

Automatic Loudspeaker Room Equalization Based On Sound Field Estimation with Artificial Intelligence Models

In-room loudspeaker equalization requires a significant amount of microphone positions in order to characterize the sound field in the room. This can be a cumbersome task for the user. This paper proposes the use of artificial intelligence to automatically estimate and equalize, without user interaction, the in-room response. To learn the relationship between loudspeaker near-field response and total sound power, or energy average over the listening area, a neural network was trained using room measurement data. Loudspeaker near-field SPL at discrete frequencies was the input data to the neural network. The approach has been tested in a subwoofer, a full-range loudspeaker, and a TV. Results showed that the in-room sound field can be estimated within 1–2 dB average standard deviation.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=21484


(5798KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content