AES E-Library

A Magnitude-Based Parametric Model Predicting the Audibility of HRTF Variation

This work proposes a parametric model for just noticeable differences of unilateral differences in head-related transfer functions (HRTFs). For seven generic magnitude-based distance metrics, common trends in their response to inter-individual and intra-individual HRTF differences are analyzed, identifying metric subgroups with pseudo-orthogonal behavior. On the basis of three representative metrics, a three-alternative forced-choice experiment is conducted, and the acquired discrimination probabilities are set in relation with distance metrics via different modeling approaches. A linear model, with coefficients based on principal component analysis and three distance metrics as input, yields the best performance, compared to a simple multi-linear regression approach or to principal component analysis--based models of higher complexity.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Permalink: https://aes2.org/publications/elibrary-page/?id=22038


(1034KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content