AES E-Library

← Back to search

Reverse Engineering a Nonlinear Mix of a Multitrack Recording

In the field of intelligent audio production, neural networks have been trained to automatically mix a multitrack to a stereo mixdown. Although these algorithms contain latent models of mix engineering, there is still a lack of approaches that explicitly model the decisions a mix engineer makes while mixing. In this work, a method to retrieve the parameters used to create a multitrack mix using only raw tracks and the stereo mixdown is presented. This method is able to model a multitrack mix using gain, panning, equalization, dynamic range compression, distortion, delay, and reverb with the aid of greybox differentiable digital signal processing modules. This method allows for a fully interpretable representation of the mixing signal chain by explicitly modeling the audio effects one may expect in a typical engineer`s mixing chain. The modeling capacities of several different mixing chains are measured using both objective and subjective measures on a dataset of student mixes. Results show that the full signal chain performs best on objective measures and that there is no statistically significant difference between the participants` perception of the full mixing chain and reference mixes.


Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

E-Libary location:
Choose your country of residence from this list:

Skip to content