AES E-Library

← Back to search

Computer-Aided Loudspeaker System Design: Part 1: Synthesis Using Optimization Techniques

Synthesis of the basic parameters of a complete loudspeaker system or an enclosure for a given loudspeaker driver to achieve some desired performance constitutes a major part of the loudspeaker system design problem. A method is described which is suitable for computer solution where the loudspeaker system parameters are chosen to minimize some specified functional. The functional is a measure of the error between some desired characteristic of the system, and the actual characteristic given by the current system parameters. In a practical case the system parameters are subject to constraints; thus a constrained optimization technique is required to minimize the functional. The method is illustrated using a functional dependent upon the error between some desired sound-pressure/frequency response and the sound-pressure/frequency response calculated from an analogous-circuit model of the system. Closed-box, vented-box, and passive-radiator type systems are considered, and the method is applicable to any system that can be modeled. The method is especially suited to those systems for which the model involves a large number of elements or has element values which are frequency-dependent, so that an analytical solution becomes impracticable.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Permalink: https://aes2.org/publications/elibrary-page/?id=3241


(1126KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content