You are currently logged in as an
Institutional Subscriber.
If you would like to logout,
please click on the button below.
Home / Publications / E-library page
Only AES members and Institutional Journal Subscribers can download
It has been shown that linear-phase crossovers of high slope can be synthesized by subtracting a suitable low-pass output from a time-delayed version of the input signal. It would be nice to be able to avoid the expense of such an electronic time-delay network, however, and in the search for a means of doing so, it was shown subsequently that the introduction of an acoustic delay between the drivers cannot achieve the desired result. There is another possibility which suggests itself; to overlap the two halves of the crossover gradually until the right half-plane zeros, which are causing the non-minimum-phase behavior, migrate into the left half-plane and the system becomes minimum phase (but, of course, nonflat). The higher the crossover order, the greater the overlap required and the greater the rippling in the combined output. Hence the usefulness of this technique for rendering the crossover minimum phase is essentially restricted to orders r(symbol)3 in practice. Nevertheless it is of theoretical interest, for once minimum-phase response is achieved, normal minimum-phase equalization will yield a flat linear-phase crossover, retaining the original high relative rolloff rates between the drivers. The equalization may be incorporated into a passive crossover network, or performed actively. The overlap technique is explored and it is shown how it affects crossovers of orders 1 through 4. It provides one more weapon in the rather sparsely equipped arsenal of transient-perfect crossovers.
Author (s): Lipshitz, Stanley P.; Vanderkooy, John
Affiliation:
University of Waterloo, Waterloo, Ontario N2L 3Gl, Canada
(See document for exact affiliation information.)
Publication Date:
1985-03-06
Import into BibTeX
Permalink: https://aes2.org/publications/elibrary-page/?id=4462
(1048KB)
Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.
Lipshitz, Stanley P.; Vanderkooy, John; 1985; Use of Frequency Overlap and Equalization to Produce High-Slope Linear-Phase Loudspeaker Crossover Networks [PDF]; University of Waterloo, Waterloo, Ontario N2L 3Gl, Canada; Paper ; Available from: https://aes2.org/publications/elibrary-page/?id=4462
Lipshitz, Stanley P.; Vanderkooy, John; Use of Frequency Overlap and Equalization to Produce High-Slope Linear-Phase Loudspeaker Crossover Networks [PDF]; University of Waterloo, Waterloo, Ontario N2L 3Gl, Canada; Paper ; 1985 Available: https://aes2.org/publications/elibrary-page/?id=4462
@article{lipshitz1985use,
author={lipshitz stanley p. and vanderkooy john},
journal={journal of the audio engineering society},
title={use of frequency overlap and equalization to produce high-slope linear-phase loudspeaker crossover networks},
year={1985},
volume={33},
issue={3},
pages={114-126},
month={march},}