AES E-Library

Computationally Efficient Conversion from Pulse-Code Modulation to Naturally Sampled Pulse-Width Modulation

This paper describes two new algorithms to convert a uniformly sampled sequence into a naturally sampled pulse-width modulation (NPWM) signal. They are suitable for both single- and double-edge NPWM. Single-edge algorithm A requires nine additions and seven multiplications per output sample and achieves a total harmonic distortion (THD) of -88.48 dB when the input signal is a 6.66-kHz tone upsampled 8 times. Single-edge algorithm B requires 14 additions, 11 multiplications, and one comparison per output sample and yields -113.07 dB of THD under the same conditions. Intermodulation distortion is very low for both algorithms. Polynomial interpolation methods with the same degree of accuracy are computationally more expensive. The algorithms have enabled the implementation of digital audio amplifiers performing efficient real-time digital signal processing.:

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=9140


(554KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content