AES E-Library

In-Phase Crossover Network Design

We consider crossover networks whose low- and high-pass outputs sum to unity magnitude, i.e., all-pass crossovers. Of these, the only known designs which have identical phase responses for both low- and high-pass sections, and thus provide optimal polar behavior, are the Linkwitz-Riley squared-Butterworth alignments. This is a most desirable property as the main lobe of the loudspeaker system`s output then shows no tilt through the crossover region. We show that the Linkwitz-Riley alignments are particular cases of a whole class of all-pass crossovers satisfying this condition. The designer has at his disposal the denominator polynomial of the all-pass transfer function to which the complete crossover network is equivalent. To this extent he has the freedom to trade off frequency response (i.e., roll-off) parameters against phase response (i.e., group delay) parameters without compromising polar behavior. The Linkwitz-Riley alignments are the frequency-symmetrical cases. These new crossovers, being subtractively derived, represent a variation on the authors` delay-derived crossover configuration.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Session subject:
Permalink: https://aes2.org/publications/elibrary-page/?id=11713


(536KB)


Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content