You are currently logged in as an
Institutional Subscriber.
If you would like to logout,
please click on the button below.
Home / Publications / E-library page
Only AES members and Institutional Journal Subscribers can download
Music similarity plays an important role in many Music Information Retrieval applications. However, it has many facets and its perception is highly subjective -- very much depending on a person`s background or retrieval goal. This paper presents a generalized approach to modeling and learning individual distance measures for comparing music pieces based on multiple facets that can be weighted. The learning process is described as an optimization problem guided by generic distance constraints. Three application scenarios with different objectives exemplify how the proposed method can be employed in various contexts by deriving distance constraints either from domain-specific expert information or user actions in an interactive setting.
Author (s): Stober, Sebastian
Affiliation:
Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
(See document for exact affiliation information.)
Publication Date:
2011-07-06
Import into BibTeX
Session subject:
Music Information Retrieval
Permalink: https://aes2.org/publications/elibrary-page/?id=15952
(825KB)
Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.
Stober, Sebastian; 2011; Adaptive Distance Measures for Exploration and Structuring of Music Collections [PDF]; Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Paper 7-1; Available from: https://aes2.org/publications/elibrary-page/?id=15952
Stober, Sebastian; Adaptive Distance Measures for Exploration and Structuring of Music Collections [PDF]; Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Paper 7-1; 2011 Available: https://aes2.org/publications/elibrary-page/?id=15952