AES E-Library

A Generalized Method for Fractional-Octave Smoothing of Transfer Functions that Preserves Log-Frequency Symmetry

Spectral smoothing is a standard operation in many fields of audio. It reduces the often overwhelming detail of high-resolution spectra to the relevant information. A method is presented for fractional-octave smoothing that preserves symmetry after smoothing for spectra that were originally symmetric in log-frequency. While existing methods require interpolation of the FFT spectra to a log-frequency scale, the proposed method uses an analytically-derived smoothing window and operates directly in the FFT domain. This approach retains compatibility with the well-established spectral smoothing techniques such as complex smoothing. The proposed method is compared with two existing methods. The first uses a symmetric (on a linear scale) smoothing window, which exhibits the correct bandwidths but does not span the correct fractional-octave frequency ranges. The second interpolates the spectrum to logarithmically-spaced frequencies and then uses a symmetric fixed-width smoothing window. Results show that the proposed method achieves nearly identical smoothed spectra to the second method, but without the need for interpolation, and that the first method indeed skews the log-symmetry of the original spectra.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Permalink: https://aes2.org/publications/elibrary-page/?id=18558


(385KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content